A proposal to validate big data from RXTE satellite

نوع المستند : المقالة الأصلية


Physics Department, Faculty of Science, Sohag University, Sohag, Egypt 82524


The Proportional Counter Array (PCA) is the primary instrument on board of Rossi X-ray Timing Explorer (RXTE) satellite. It was operated for more than 16 years to detect the time variation of astronomical X-ray sources in the range of 2-60 KeV and provide event information timed to microseconds in different channels with different data modes. This variety makes it harder to analyze such huge data using the standard procedures. In this study, a customized software is proposed to validate the data by considering all necessary precautions before extracting the final lightcurves (LCs) which are used in both spectral and timing analyses. The proposed software is under test by reproducing the results of four well-known objects with (> 3,000 observations) and total exposure time (>5 million seconds). The results showed good agreement with the diagnostic diagrams from literature. However, this code is fast and applies all the standard procedures in one process using one interface.

الكلمات الرئيسية

SJYR stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

  1. Archive. Retrieved February 23, 2022, from https://heasarc.gsfc.nasa.gov/docs/xte/recipes/archive.html

    BELLONI, T., & HASINGER, G. (1990). An atlas of aperiodic variability in HMXB. Astronomy and Astrophysics (Berlin. Print), 230(1), 103–119. https://ui.adsabs.harvard.edu/abs/1990A&A...230..103B/abstract

    Belloni, T., Klein-Wolt, M., Méndez, M., Van Der Klis, M., & Van Paradijs, J. (2000). A model-independent analysis of the variability of GRS 1915+105. Astronomy and Astrophysics, 355(1), 271–290.

    Belloni, T. M., & Motta, S. E. (2016). Transient Black Hole Binaries. In Astrophysics of black holes (pp. 61–97). https://doi.org/10.1007/978-3-662-52859-4_2

    Belloni, T, & Hasinger, G. (1990). Variability in the noise properties of Cygnus X-1. In A&A (Vol. 227). https://ui.adsabs.harvard.edu/abs/1990A&A...227L..33B/abstract

    Belloni, Tomaso, Psaltis, D., & van der Klis, M. (2002). A Unified Description of the Timing Features of Accreting X‐Ray Binaries. The Astrophysical Journal, 572(1), 392–406. https://doi.org/10.1086/340290

    Bradt, H. V., Rothschild, R. E., Swank, J. H., Bradt, H. V., Rothschild, R. E., & Swank, J. H. (1993). X-ray timing explorer mission. In A&AS (Vol. 97, Issue 1).

    Chen, Y. P., Zhang, S., Torres, D. F., Wang, J. M., Li, J., Li, T. P., & Qu, J. L. (2010). The 2009 outburst of H 1743-322 as observed by RXTE. Astronomy & Astrophysics, 522, A99. https://doi.org/10.1051/0004-6361/201014017

    Churazov, E., Gilfanov, M., & Revnivtsev, M. (2001). Soft state of Cygnus X-1: Stable disc and unstable corona. Monthly Notices of the Royal Astronomical Society, 321(4), 759–766. https://doi.org/10.1046/j.1365-8711.2001.04056.x

    Energy-Channel Conversion Table. (n.d.). Retrieved February 23, 2022, from https://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html

    FTOOLS. (n.d.). Retrieved February 23, 2022, from https://heasarc.gsfc.nasa.gov/docs/software/heasoft/ftools/

    Glasser, C. A., Odell, C. E., & Seufert, S. E. (1994). The Proportional Counter Array (PCA) Instrument for the X ray Timing Explorer Satellite (XTE). IEEE Transactions on Nuclear Science, 41(4), 1343–1348. https://doi.org/10.1109/23.322911

    HEASARC. (n.d.). Retrieved February 23, 2022, from https://heasarc.gsfc.nasa.gov/FTP/xte/data/archive/

    1. IDLX. (n.d.). Retrieved February 23, 2022, from https://idlastro.gsfc.nasa.gov/ftp/contrib/rxte/

    Klis, M. (1989). Fourier Techniques in X-Ray Timing. In Timing Neutron Stars (pp. 27–69). https://doi.org/10.1007/978-94-009-2273-0_3

    Leahy, D. A., Darbro, W., Elsner, R. F., Weisskopf, M. C., Kahn, S., Sutherland, P. G., & Grindlay, J. E. (1983). On searches for pulsed emission with application to four globular cluster X-ray sources - NGC 1851, 6441, 6624, and 6712. The Astrophysical Journal, 266, 160. https://doi.org/10.1086/160766

    Lewin, W. H. G., Van Paradijs, J., & Van der Klis, M. (1988). A review of quasi-periodic oscillations in low-mass X-ray binaries. In Space Science Reviews (Vol. 46, Issues 3–4, pp. 273–377). Kluwer Academic Publishers. https://doi.org/10.1007/BF00212242

    Maitra, D., & Bailyn, C. D. (2004). Evolution of Spectral States of Aquila X‐1 during the 2000 Outburst. The Astrophysical Journal, 608(1), 444–453. https://doi.org/10.1086/382746

    Miyamoto, S., Kimura, K., Kitamoto, S., Dotani, T., & Ebisawa, K. (1991). X-ray variability of GX 339 - 4 in its very high state. The Astrophysical Journal. https://doi.org/10.1086/170837

    Miyamoto, S., & Kitamoto, S. (1989). X-ray time variations from Cygnus X-1 and implications for the accretion process. Nature. https://doi.org/10.1038/342773a0

    Miyamoto, S., Kitamoto, S., Iga, S., Negoro, H., & Terada, K. (1992). Canonical time variations of X-rays from black hole candidates in the low-intensity state. The Astrophysical Journal. https://doi.org/10.1086/186389

    Morgan, E. H. (1994). Data Modes of the Experiment Data System on XTE. AAS, 184, 26.02.

    Motta, S., Muñoz-Darias, T., Casella, P., Belloni, T., & Homan, J. (2011). Low-frequency oscillations in black holes: A spectral-timing approach to the case of GX 339-4. Monthly Notices of the Royal Astronomical Society, 418(4), 2292–2307. https://doi.org/10.1111/j.1365-2966.2011.19566.x

    Muñoz-Darias, T., Fender, R. P., Motta, S. E., & Belloni, T. M. (2014). Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Monthly Notices of the Royal Astronomical Society, 443(4), 3270–3283. https://doi.org/10.1093/mnras/stu1334

    Muñoz-Darias, T., Motta, S., & Belloni, T. M. (2011). Fast variability as a tracer of accretion regimes in black hole transients. Monthly Notices of the Royal Astronomical Society, 410(1), 679–684. https://doi.org/10.1111/j.1365-2966.2010.17476.x

    Nowak, M. A. (2000). Are there three peaks in the power spectra of GX 339-4 and Cyg X-1? Monthly Notices of the Royal Astronomical Society, 318(2), 361–367. https://doi.org/10.1046/j.1365-8711.2000.03668.x

    Nowak, Michael A., Vaughan, B. A., Wilms, J., Dove, J. B., & Begelman, M. C. (1999). Rossi X‐Ray Timing Explorer Observation of Cygnus X‐1. II. Timing Analysis. The Astrophysical Journal, 510(2), 874–891. https://doi.org/10.1086/306610

    Pottschmidt, K., Wilms, J., Nowak, M. A., Pooley, G. G., Gleissner, T., Heindl, W. A., Smith, D. M., Remillard, R., & Staubert, R. (2003). Long term variability of Cygnus X-1: I. X-ray spectral-temporal correlations in the hard state. Astronomy and Astrophysics, 407(3), 1039–1058. https://doi.org/10.1051/0004-6361:20030906

    Pottschmidt, K, Wilms, J., Nowak, M. A., Heindl, W. A., Smith, D. M., & Staubert, R. (2000). Temporal evolution of X-ray lags in Cygnus X-1. Astronomy and Astrophysics, 357(1), 1–5.

    Pottschmidt, K, Wilms, J., Staubert, R., Nowak, M. A., Heindl, W. A., & Smith, D. M. (2001). Cygnus X-1 from RXTE: Monitoring the short term variability. Advances in Space Research, 28(2–3), 493–498. https://doi.org/10.1016/S0273-1177(01)00429-X

    Pottschmidt, Katja, König, M., Wilms, J., & Staubert, R. (1998). Analyzing short-term X-ray variability of cygnus X-1 with linear state space models. Astronomy and Astrophysics, 334(1), 201–209.

    van Straaten, S., van der Klis, M., di Salvo, T., & Belloni, T. (2002). A Multi‐Lorentzian Timing Study of the Atoll Sources 4U 0614+09 and 4U 1728−34. The Astrophysical Journal, 568(2), 912–930. https://doi.org/10.1086/338948

    Vaughan, B. A., van der Klis, M., Wood, K. S., Norris, J. P., Hertz, P., Michelson, P. F., van Paradijs, J., Lewin, W. H. G., Mitsuda, K., & Penninx, W. (1994). Searches for millisecond pulsations in low-mass X-ray binaries, 2. The Astrophysical Journal. https://doi.org/10.1086/174818

    Zhou, J. N., Liu, Q. Z., Chen, Y. P., Li, J., Qu, J. L., Zhang, S., Gao, H. Q., & Zhang, Z. (2013). The last three outbursts of H 1743-322 observed by RXTE in its latest service phase. Mon. Not. R. Astron. Soc, 000(0000), 0–000. https://doi.org/10.1093/mnras/stt326